Combinatorial interpretation and positivity of Kerov’s character polynomials

نویسنده

  • Valentin Féray
چکیده

Kerov’s polynomials give irreducible character values of the symmetric group in term of the free cumulants of the associated Young diagram. Using a combinatorial approach with maps, we prove in this article a positivity result on their coefficients, which extends a conjecture of S. Kerov. Résumé. Les polynômes de Kerov expriment les valeurs des caractères irréductibles du groupe symmétrique en fonction des cumulants libres du diagramme de Young associé. Grâce à une approche combinatoire à base de cartes, nous prouvons dans cet article un résultat de positivité sur leurs coefficients, qui généralise une conjecture de S. Kerov.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Explicit Form for Kerov’s Character Polynomials

Kerov considered the normalized characters of irreducible representations of the symmetric group, evaluated on a cycle, as a polynomial in free cumulants. Biane has proved that this polynomial has integer coefficients, and made various conjectures. Recently, Śniady has proved Biane’s conjectured explicit form for the first family of nontrivial terms in this polynomial. In this paper, we give an...

متن کامل

Linear coefficients of Kerov’s polynomials: bijective proof and refinement of Zagier’s result

We look at the number of permutations β of [N ] with m cycles such that (1 2 . . . N)β−1 is a long cycle. These numbers appear as coefficients of linear monomials in Kerov’s and Stanley’s character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size N + 1. We present the first combinatorial proof of his result, introducing a new bijectio...

متن کامل

Stanley’s character polynomials and coloured factorizations in the symmetric group

In Stanley [8], the author introduces polynomials which help evaluate symmetric group characters and conjectures that the coefficients of the polynomials are positive. In [9], the same author gives a conjectured combinatorial interpretation for the coefficients of the polynomials. Here, we prove the conjecture for the terms of highest degree.

متن کامل

Applications of Macdonald Polynomials

s for Talks Speaker: Nick Loehr (Virginia Tech, USA) (talk describes joint work with Jim Haglund and Mark Haiman) Title: Symmetric and Non-symmetric Macdonald Polynomials Abstract: Macdonald polynomials have played a central role in symmetric function theory ever since their introduction by Ian Macdonald in 1988. The original algebraic definitions of these polynomials are very nonexplicit and d...

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008